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Introduction
Model Reduction for Control Systems

Nonlinear Control Systems

Σ :

{
Eẋ(t) = f (t, x(t), u(t)), Ex(t0) = Ex0,
y(t) = g(t, x(t), u(t)),

with

(generalized) states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.

If E singular  descriptor system. Here, E = In for simplicity.
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Model Reduction for Control Systems

Original System (E = In)

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq,

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr , r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rq.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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Model Reduction for Control Systems

Original System (E = In)

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq,

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr , r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rq.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂ .
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System Classes

Control-Affine (Autonomous) Systems

ẋ(t) = f (t, x , u) = A(x(t)) + B(x(t))u(t), A : Rn → Rn, B : Rn → Rn×m,

y(t) = g(t, x , u) = C(x(t)) +D(x(t))u(t), C : Rn → Rq, D : Rn → Rq×m.
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Linear, Time-Invariant (LTI) Systems

ẋ(t) = f (t, x , u) = Ax(t) + Bu(t), A ∈ Rn×n, B ∈ Rn×m,

y(t) = g(t, x , u) = Cx(t) + Du(t), C ∈ Rq×n, D ∈ Rq×m.
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System Classes

Quadratic-Bilinear (QB) Systems

ẋ(t) = f (t, x , u) = Ax(t) + H (x(t)⊗ x(t)) +
∑m

i=1 ui (t)Aix(t) + Bu(t),
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, B ∈ Rn×m,

y(t) = g(t, x , u) = Cx(t) + Du(t), C ∈ Rq×n, D ∈ Rq×m.

Polynomial Systems

ẋ(t) = f (t, x , u) = Ax(t) +

np∑
j=2

Hj

(
⊗jx(t)

)
+

np∑
j=2

m∑
k=1

Ak
j

(
⊗jx(t)

)
uk(t) + Bu(t),

Hj ,A
k
j of ”appropriate size”,

y(t) = g(t, x , u) = Cx(t) + Du(t), C ∈ Rq×n, D ∈ Rq×m.
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System Classes

Control-Affine (Autonomous) Systems

ẋ(t) = f (t, x , u) = A(x(t)) + B(x(t))u(t), A : Rn → Rn, B : Rn → Rn×m,

y(t) = g(t, x , u) = C(x(t)) +D(x(t))u(t), C : Rn → Rq, D : Rn → Rq×m.

Quadratic-Bilinear (QB) Systems

ẋ(t) = f (t, x , u) = Ax(t) + H (x(t)⊗ x(t)) +
∑m

i=1 ui (t)Aix(t) + Bu(t),

A,Ai ∈ Rn×n, H ∈ Rn×n2

, B ∈ Rn×m,

y(t) = g(t, x , u) = Cx(t) + Du(t), C ∈ Rq×n, D ∈ Rq×m.

Written in control-affine form:

A(x) := Ax + H (x ⊗ x) , B(x) := [A1, . . . ,Am] (Im ⊗ x) + B

C(x) := Cx , D(x) := D.
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How general are these system classes?
Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:

ẋ = A(x) + Bu with A(0) = 0,

y = Cx + Du.
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Consider smooth nonlinear, control-affine system with m = 1:

ẋ = A(x) + Bu with A(0) = 0.

Taylor expansion of state equation about x = 0 yields

ẋ = Ax + H (x ⊗ x) + . . .+ Bu.

Instead of truncating Taylor expansion, Carleman (bi)linearization takes into account K
higher order terms (h.o.t.) by introducing new variables:

x (k) := x ⊗ · · · ⊗︸ ︷︷ ︸
(k−1) times

x , k = 1, . . . ,K .

Here: K = 2, i.e., z := x (2) = x ⊗ x .
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How general are these system classes?
Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:

ẋ = A(x) + Bu with A(0) = 0,

y = Cx + Du.

Instead of truncating Taylor expansion, Carleman (bi)linearization takes into account
K = 2 higher order terms (h.o.t.) by introducing new variables: z := x (2) = x ⊗ x .
Then z satisfies

ż = ẋ ⊗ x + x ⊗ ẋ = (Ax + Hz + . . .+ Bu)⊗ x + x ⊗ (Ax + Hz + . . .+ Bu).

Ignoring h.o.t. =⇒ bilinear system with state x⊗ :=
[
xT , zT

]T ∈ Rn+n2

:

d

dt
x⊗ =

[
A H
0 A⊗ In + In ⊗ A

]
x⊗ +

[
0 0

B ⊗ In + In ⊗ B 0

]
(x⊗)u +

[
B
0

]
u,

y⊗ =
[
C 0

]
x⊗ + Du.
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ż = ẋ ⊗ x + x ⊗ ẋ = (Ax + Hz + . . .+ Bu)⊗ x + x ⊗ (Ax + Hz + . . .+ Bu).

Ignoring h.o.t. =⇒ bilinear system with state x⊗ :=
[
xT , zT

]T ∈ Rn+n2

:

d

dt
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]
x⊗ +
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B ⊗ In + In ⊗ B 0

]
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[
B
0

]
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y⊗ =
[
C 0
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x⊗ + Du.

Remark

Bilinear systems directly occur, e.g., in biological systems, PDE control problems with
mixed boundary conditions, ”control via coefficients”, networked control systems, . . .
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How general are these system classes?
Quadratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [Phillips ’03].

But exact representation of smooth nonlinear systems possible:

Theorem [Gu ’09/’11]

Assume that the state equation of a nonlinear system is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + Bu,

where gi (x) : Rn → Rn are compositions of uni-variable rational, exponential,
logarithmic, trigonometric or root functions, respectively. Then, by iteratively taking
derivatives and adding algebraic equations, respectively, the nonlinear system can be
transformed into a QB(DAE) system.

Alternatively, polynomial-bilinear system can be obtained using iterated Lie brackets
[Gu ’11].

C. Gu. QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(9):1307–1320, 2011.

L. Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

J. R. Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 22(2):171-187, 2003.
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Some QB-transformable Systems

FitzHugh-Nagumo model

Model describes activation and
de-activation of neurons.

Contains a cubic nonlinearity,
which can be transformed to QB
form.

Sine-Gordon equation

Applications in biomedical studies,
mechanical transmission lines, etc.

Contains sin function, which can
also be rewritten into QB form.
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Linear Systems and their Transfer Functions
Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)− x(0)) to linear system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

Model reduction in frequency domain: Fast evaluation of mapping u → y .
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Linear Systems and their Transfer Functions
Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)− x(0)) to linear system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(
C(sIn − A)−1B + D︸ ︷︷ ︸

=:G(s)

)
u(s).

G(s) is the transfer function of Σ.

Model reduction in frequency domain: Fast evaluation of mapping u → y .
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Linear Systems and their Transfer Functions
Transfer functions of linear systems

Formulating model reduction in frequency domain

Approximate the dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,
ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ =
∥∥∥Gu − Ĝu

∥∥∥ ≤ ∥∥∥G − Ĝ
∥∥∥ · ‖u‖ < tolerance · ‖u‖ .
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Linear Systems and their Transfer Functions

Formulating model reduction in frequency domain

Approximate the dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,
ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ =
∥∥∥Gu − Ĝu

∥∥∥ ≤ ∥∥∥G − Ĝ
∥∥∥ · ‖u‖ < tolerance · ‖u‖ .

=⇒ Approximation problem: min
order (Ĝ)≤r

∥∥∥G − Ĝ
∥∥∥.
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Recap: Balanced Truncation for Linear Systems

Basic concept

System Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization (needs P,Q!) of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1,TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

])
.
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ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization (needs P,Q!) of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1,TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

])
.
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Recap: Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under T and determine the energy
transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”
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Recap: Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under T and determine the energy
transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

Minimum energy to reach x0 in balanced coordinates:

inf
u∈L2(−∞,0]

x(0)=x0

∫ 0

−∞
u(t)Tu(t) dt = xT

0 P−1x0 =
n∑

j=1

1

σj
x2

0,j
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Motivation:

HSV are system invariants: they are preserved under T and determine the energy
transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

Minimum energy to reach x0 in balanced coordinates:

inf
u∈L2(−∞,0]

x(0)=x0

∫ 0

−∞
u(t)Tu(t) dt = xT

0 P−1x0 =
n∑

j=1

1

σj
x2

0,j

Energy contained in the system if x(0) = x0 and u(t) ≡ 0 in balanced coordinates:

‖y‖2
2 =

∫ ∞
0

y(t)T y(t) dt = xT
0 Qx0 =

n∑
j=1

σjx
2
0,j
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Recap: Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under T and determine the energy
transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

In balanced coordinates, energy transfer from u− to y+ is

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j .

”engineer’s point of view”
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Recap: Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under T and determine the energy
transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

In balanced coordinates, energy transfer from u− to y+ is

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j .

”engineer’s point of view”

=⇒ Truncate states corresponding to “small” HSVs
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Recap: Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤ ‖G − Ĝ‖H∞ ‖u‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2 .
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Recap: Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤ ‖G − Ĝ‖H∞ ‖u‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2 .

Practical implementation

Rather than solving Lyapunov equations for P,Q (n2 unknowns!), find
S ,R ∈ Rn×s with s � n such that P ≈ SST , Q ≈ RRT .

Reduced-order model directly obtained via small-scale (s × s) SVD of RTS!

No O(n3) or O(n2) computations necessary!
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Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the class of bilinear systems,
where we need the solutions of the Lyapunov-plus-positive equations:

AP + PAT +
m∑
i=1

AiPA
T
i + BBT = 0,

ATQ + QAT +
m∑
i=1

AT
i QAi + CTC = 0.

If unique solutions P = PT ≥ 0, Q = QT ≥ 0 exist, these can be used in balancing
procedure like for linear systems, with

Â := W TAV , Âi = W TAiV , B̂ := W TB, Ĉ := CV .

See [Al-Baiyat/Bettayeb 1993, B./Damm 2011] for details.

Stability preservation [B./Damm/Redmann/Rodriguez Cruz 2016].

These equations also appear for stochastic control systems, see [B./Damm 2011].

”Twice-the-trail-of-the-HSVs” error bound does not hold [B./Damm 2014].

Alternative Gramians based on linear matrix inequalities investigated by
[Redmann 2018], yield H∞ error bound based on truncated characteristic values,
but hard to compute for large-scale systems!
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Lyapunov-plus-Positive Equations
Some basic facts and assumptions

AX + XAT +
m∑
i=1

AiXA
T
i + BBT = 0. (1)

Need a positive semi-definite symmetric solution X .

In standard Lyapunov case, existence and uniqueness guaranteed if A stable
(Λ (A) ⊂ C−); this is not sufficient here: (1) is equivalent to(

In ⊗ A + A⊗ In +
m∑
i=1

Ai ⊗ Ai

)
vec(X ) = − vec(BBT ).

Sufficient condition for unique solvability: smallness of Ai (related to stability radius
of A).  bounded-input bounded-output (BIBO) stability of bilinear systems.

This will be assumed from here on, hence: existence and uniqueness of positive
semi-definite solution X = XT .

Want: solution methods for large scale problems, i.e., only matrix-matrix
multiplication with A,Aj , solves with (shifted) A allowed!

Requires to compute data-sparse approximation to generally dense X ; here:
X ≈ ZZT with Z ∈ Rn×nZ , nZ � n!
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Lyapunov-plus-Positive Equations
Low-rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

AjXA
T
j + BBT = 0 ?

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Model Order Reduction for Nonlinear Systems 15/46

mailto:benner@mpi-magdeburg.mpg.de


Lyapunov-plus-Positive Equations
Low-rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

AjXA
T
j + BBT = 0 ?

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).
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Lyapunov-plus-Positive Equations
Low-rank Approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

Apply

M−1 = −
∫ ∞

0

exp(tM)dt

to A and approximate the integral via (sinc) quadrature ⇒

A−1 ≈ −
k∑

i=−k

ωi exp(tkA),

with error ∼ exp(−
√
k) (exp(−k) if A = AT ), then an approximate Lyapunov solution is

given by

vec(X ) ≈ vec(Xk) =
k∑

i=−k

ωi exp(tiA) vec(BBT ).
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Lyapunov-plus-Positive Equations
Low-rank Approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

vec(X ) ≈ vec(Xk) =
k∑

i=−k

ωi exp(tiA) vec(BBT ).

Now observe that

exp(tiA) = exp (ti (In ⊗ A + A⊗ In)) ≡ exp(tiA)⊗ exp(tiA).

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Model Order Reduction for Nonlinear Systems 15/46

mailto:benner@mpi-magdeburg.mpg.de


Lyapunov-plus-Positive Equations
Low-rank Approximations
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AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

vec(X ) ≈ vec(Xk) =
k∑

i=−k

ωi exp(tiA) vec(BBT ).

Now observe that

exp(tiA) = exp (ti (In ⊗ A + A⊗ In)) ≡ exp(tiA)⊗ exp(tiA).

Hence,

vec(Xk) =
k∑

i=−k

ωi (exp(tiA)⊗ exp(tiA)) vec(BBT )
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Lyapunov-plus-Positive Equations
Low-rank Approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

Hence,

vec(Xk) =
k∑

i=−k

ωi (exp(tiA)⊗ exp(tiA)) vec(BBT )

=⇒ Xk =
k∑

i=−k

ωi exp(tiA)BBT exp(tiA
T ) ≡

k∑
i=−k

ωiBiB
T
i ,

so that rank(Xk) ≤ (2k + 1)m with

‖X − Xk‖2 . exp(−
√
k) ( exp(−k) for A = AT )!
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Lyapunov-plus-Positive Equations
Low-rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

AjXA
T
j + BBT = 0 ?

Problem: in general,

exp

ti (I ⊗ A + A⊗ I +
m∑
j=1

Aj ⊗ Aj )

 6= (exp (tiA)⊗ exp (tiA)) exp

ti (
m∑
j=1

Aj ⊗ Aj )

.
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Lyapunov-plus-Positive Equations
Low-rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

AjXA
T
j + BBT = 0 ?

Assume that m = 1 and A1 = UV T with U,V ∈ Rn×r and consider

( In ⊗ A + A⊗ In︸ ︷︷ ︸
=A

+UV T ⊗ UV T ) vec(X ) = − vec(BBT )︸ ︷︷ ︸
=:y

⇐⇒
(
A+ (U ⊗ U)(V ⊗ V )T

)
vec(X ) = y .
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(
A+ (U ⊗ U)(V ⊗ V )T

)
vec(X ) = y .

Sherman-Morrison-Woodbury =⇒
A vec(X ) = y + (U ⊗ U)

(
Ir ⊗ Ir − (V ⊗ V )TA−1(U ⊗ U)

)
(V ⊗ V )TA−1y︸ ︷︷ ︸

=:w

.
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.

Matrix rank of RHS −BBT − U vec−1 (w)UT is ≤ r + 1!
 Apply results for linear Lyapunov equations with r.h.s of rank r + 1.
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Lyapunov-plus-Positive Equations
Low-rank Approximations

Theorem [B./Breiten 2012]

Assume existence and uniqueness with stable A and Aj = UjV
T
j , with

Uj ,Vj ∈ Rn×rj . Set r =
∑m

j=1 rj .
Then the solution X of

AX + XAT +
m∑
j=1

AjXA
T
j + BBT = 0

can be approximated by Xk of rank (2k + 1)(m + r), with an error satisfying

‖X − Xk‖2 . exp(−
√
k).
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Lyapunov-plus-Positive Equations
Numerical Methods

Generalized Alternating Directions Iteration (ADI) method.

1. Computing square solution matrix (∼ n2 unknowns) [Damm 2008].
2. Computing low-rank factors of solutions (∼ n unknowns) [B./Breiten 2013].

Generalized Extended (or Rational) Krylov Subspace Method
(EKSM/RKSM) [B./Breiten 2013].

Tensorized versions of standard Krylov subspace methods, e.g., PCG,
PBiCGStab [Kressner/Tobler 2011, B./Breiten 2013].

Inexact stationary (fix point) iteration [Shank/Simoncini/Szyld 2016].
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

Σ :

{
ẋ(t) = Ax(t) +

∑m

i=1
Aix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

Σ :

{
ẋ(t) = Ax(t) +

∑m

i=1
Aix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.

Key Observation [B./Breiten 2011]

Consider parameters as additional inputs, a linear parametric system

ẋ(t) = Ax(t) +
∑mp

i=1
ai (p)Aix(t) + B0u0(t), y(t) = Cx(t)

with B0 ∈ Rn×m0 can be interpreted as bilinear system:

u(t) :=
[
a1(p) . . . amp (p) u0(t)

]T
,

B :=
[
0 . . . 0 B0

]
∈ Rn×m, m = mp + m0.
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

Consequence

Model order reduction techniques for bilinear systems can be applied to linear
parametric systems!

Here: balanced truncation for bilinear systems.

Alternative: H2-optimal rational interpolation/bilinear IRKA [B./Breiten 2012,

B./Bruns 2015, Flagg/Gugercin 2015].
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Application to Parametric MOR
Fast Simulation of Cyclic Voltammogramms [Feng/Koziol/Rudnyi/Korvink 2006]

Eẋ(t) = (A + p1(t)A1 + p2(t)A2)x(t) + B,

y(t) = Cx(t), x(0) = x0 6= 0,

Rewrite as system with zero initial
condition,

FE model: n = 16, 912, m = 3, q = 1,

pj ∈ [0, 109] time-varying voltage functions,

transfer function G (iω, p1, p2),

reduced system dimension r = 67,

max
ω∈{ωmin,...,ωmax}
pj∈{pmin,...,pmax}

‖G−Ĝ‖2

||G ||2 < 6 · 10−4,

evaluation times: FOM 4.5h, ROM 38s
 speed-up factor ≈ 426.

Figure: [Feng et al. 2006]
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Application to Parametric MOR
Fast Simulation of Cyclic Voltammogramms [Feng/Koziol/Rudnyi/Korvink 2006]

Original. . . and reduced-order model.
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Balanced Truncation for Nonlinear Systems
Approaches

Nonlinear balancing based on energy functionals [Scherpen ’93, Gray/Mesko ’96].

Definition [Scherpen ’93, Gray/Mesko ’96]

The reachability energy functional, Lc(x0), and observability energy functional, Lo(x0) of
a system are given as:

Lc(x0) = inf
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt, Lo(x0) =

1

2

∫ ∞
0

‖y(t)‖2dt.

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

Empirical Gramians/frequency-domain POD [Lall et al ’99, Willcox/Peraire ’02].

Disadvantage: Depends on chosen training input (e.g., δ(t0)) like other POD
approaches.

 Goal: computationally efficient and input-independent method!

For recent developments on empirical Gramians, see [Himpe ’18].
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Approaches

Nonlinear balancing based on energy functionals [Scherpen ’93, Gray/Mesko ’96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

Empirical Gramians/frequency-domain POD [Lall et al ’99, Willcox/Peraire ’02].

Example: controllability Gramian from time domain data (snapshots)

1. Define reachability Gramian of the system

P =
∫∞

0
x(t)x(t)Tdt, where x(t) solves ẋ = f (x , δ), x(0) = x0.

2. Use time-domain integrator to produce snapshots xk ≈ x(tk), k = 1, . . . ,K .
3. Approximate P ≈

∑K
k=0 wkxkx

T
k with positive weights wk .

4. Analogously for observability Gramian.
5. Compute balancing transformation and apply it to nonlinear system.

Disadvantage: Depends on chosen training input (e.g., δ(t0)) like other POD
approaches.

 Goal: computationally efficient and input-independent method!

For recent developments on empirical Gramians, see [Himpe ’18].
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Balanced Truncation for QB Systems
Gramians for QB Systems

A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

For bilinear systems, such local bounds were derived in [B./Damm 2011] using the
solutions to the Lyapunov-plus-positive equations:

AP + PAT +
∑m

i=1 AiPA
T
i + BBT = 0,

ATQ + QAT +
∑m

i=1 A
T
i QAi + CTC = 0.

(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

Here we aim at determining algebraic Gramians for QB (and polynomial)
systems, which

provide bounds for the energy functionals of QB systems,
generalize the Gramians of linear and bilinear systems, and
allow us to find the states that are hard to control as well as hard to
observe in an efficient and reliable way.
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Gramians for QB Systems
Controllability Gramians

Consider input → state map of QB system (m = 1, N ≡ A1):

ẋ(t) = Ax(t) + Hx(t)⊗ x(t) + Nx(t)u(t) + Bu(t), x(0) = 0.

Integration yields

x(t) =

t∫
0

eAσ1Bu(t − σ1)dσ1 +

t∫
0

eAσ1Nx(t − σ1)u(t − σ1)dσ1

+

t∫
0

eAσ1Hx(t − σ1)⊗ x(t − σ1)dσ1

=

t∫
0

eAσ1Bu(t − σ1)dσ1 +

t∫
0

t−σ1∫
0

eAσ1NeAσ2Bu(t − σ1)u(t − σ1 − σ2)dσ1dσ2

+

t∫
0

t−σ1∫
0

t−σ1∫
0

eAσ1H(eAσ2B ⊗ eAσ3B)u(t − σ1 − σ2)u(t − σ1 − σ3)dσ1dσ2dσ3 + . . .

By iteratively inserting expressions for x(t − •), we obtain the Volterra series
expansion for the QB system.

[Rugh ’81]
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Gramians for QB Systems
Controllability Gramians

Using the Volterra kernels, we can define the controllability mappings

Π1(t1) := eAt1B, Π2(t1, t2) := eAt1NΠ1(t2),

Π3(t1, t2, t3) := eAt1 [H(Π1(t2)⊗ Π1(t3)),NΠ2(t1, t2)], . . .

and a candidate for a new Gramian:

P :=
∞∑
k=1

Pk , where Pk =

∫ ∞
0

· · ·
∫ ∞

0

Πk(t1, . . . , tk)Πk(t1, . . . , tk)T dt1 . . . dtk .

Theorem [B./Goyal ’16]

If it exists, the new controllability Gramian P for QB (MIMO) systems with stable A
solves the quadratic Lyapunov equation

AP + PAT +
m∑

k=1

AkPA
T
k + H(P ⊗ P)HT + BBT = 0.

Note: H = 0  ”bilinear reachability Gramian”; if additionally, all Ak = 0  linear one.
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Gramians for QB Systems
Dual systems and observability Gramians [Fujimoto et al. ’02]

Controllability energy functional (Gramian) of the dual system ⇔
observability energy functional (Gramian) of the original system.

This allows to define dual systems for QB systems:

ẋ(t) = Ax(t) + Hx(t)⊗ x(t) +
∑m

k=1
Akx(t)uk (t) + Bu(t), x(0) = 0,

ẋd (t) = −AT xd (t)− H(2)x(t)⊗ xd (t)−
∑m

k=1
AT
k xd (t)uk (t)− CTud (t), xd (∞) = 0,

yd (t) = BT xd (t),

where H(2) is the mode-2 matricization of the QB Hessian.
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Controllability energy functional (Gramian) of the dual system ⇔
observability energy functional (Gramian) of the original system.

This allows to define dual systems for QB systems:

ẋ(t) = Ax(t) + Hx(t)⊗ x(t) +
∑m

k=1
Akx(t)uk (t) + Bu(t), x(0) = 0,

ẋd (t) = −AT xd (t)− H(2)x(t)⊗ xd (t)−
∑m

k=1
AT
k xd (t)uk (t)− CTud (t), xd (∞) = 0,

yd (t) = BT xd (t),

where H(2) is the mode-2 matricization of the QB Hessian.
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Gramians for QB Systems
Dual systems and observability Gramians for QB systems [B./Goyal ’17]

Writing down the Volterra series for the dual system  observability
mapping.

This provides the observability Gramian Q for the QB system. It solves

ATQ + QA +
m∑

k=1

AT
k QAk + H(2)(P ⊗ Q)

(
H(2)

)T
+ CTC = 0.
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Gramians for QB Systems
Dual systems and observability Gramians for QB systems [B./Goyal ’17]

Writing down the Volterra series for the dual system  observability
mapping.

This provides the observability Gramian Q for the QB system. It solves

ATQ + QA +
m∑

k=1

AT
k QAk + H(2)(P ⊗ Q)

(
H(2)

)T
+ CTC = 0.

Remarks:

– Observability Gramian depends on controllability Gramian!
– For H = 0, obtain ”bilinear observability Gramian”, and if also all Ak = 0, the

linear one.
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Gramians and Energy Functionals

Bounding the energy functionals:

Lemma [B./Goyal ’17]

In a neighborhood of the stable equilibrium, Bε(0),

Lc(x0) ≥ 1
2x

T
0 P−1x0, Lo(x0) ≤ 1

2x
T
0 Qx0, x0 ∈ Bε(0),

for ”small signals” and x0 pointing in unit directions.

Another interpretation of Gramians in terms of energy functionals

1. If the system is to be steered from 0 to x0, where x0 6∈ range(P), then
Lc(x0) =∞ for all feasible input functions u.

2. If the system is (locally) controllable and x0 ∈ ker (Q), then Lo(x0) = 0.
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Gramians and Energy Functionals

Illustration using a scalar system

ẋ(t) = ax(t) + hx2(t) + nx(t)u(t) + bu(t), y(t) = cx(t).

−0.2 0 0.2
0

1

2

3

·10−2

x

Actual energy
Via Gramians

(a) Input energy lower bound.

−0.2 0 0.2
0

2

4

6

·10−2

x

Actual energy

Via Gramians

(b) Output energy upper bound.

Figure: Comparison of energy functionals for −a = b = c = 2, h = 1, n = 0.
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Truncated Gramians

Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

Fix point iteration scheme can be employed but very expensive.
[Damm ’08]

To overcome this issue, we propose truncated Gramians for QB systems.

Definition (Truncated Gramians) [B./Goyal ’16]

The truncated Gramians PT and QT for QB systems satisfy

APT + PT A
T = −BBT −

∑m

k=1
AkPlA

T
k − H(Pl ⊗ Pl)H

T ,

ATQT + QT A = −CTC −
∑m

k=1
AT
k QlAk − H(2)(Pl ⊗ Ql)(H(2))T ,

where
APl + PlA

T = −BBT and ATQl + QlA = −CTC .
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Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

T-Gramians approximate energy functionals better than the actual Gramians.

σi (P · Q) > σi (PT · QT ) ⇒ obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.
Most importantly, we need solutions of only four standard Lyapunov
equations.
Interpretation of controllability/observability of the system via T-Gramians
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Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

T-Gramians approximate energy functionals better than the actual Gramians.

σi (P · Q) > σi (PT · QT ) ⇒ obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

Most importantly, we need solutions of only four standard Lyapunov
equations.

Interpretation of controllability/observability of the system via T-Gramians:

If the system is to be steered from 0 to x0, where x0 6∈ range(PT ), then
Lc(x0) =∞.

If the system is controllable and x0 ∈ ker (QT ), then Lo(x0) = 0.
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Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).

1: Input: A,H,Ak ,B,C .

2: Compute low-rank factors of T-Gramians: PT ≈ SST and QT ≈ RRT .

3: Compute SVD of STR:

STR = UΣV T = [U1 U2]diag(Σ1,Σ2)[V1 V2]T .

4: Construct the projection matrices V and W:

V = SU1Σ
−1/2

1 and W = RV1Σ
−1/2

1 .

5: Output: reduced-order matrices:

Â =WTAV, Ĥ =WTH(V ⊗ V), Âk =WTAkV,
B̂ =WTB, Ĉ = CV.

Remark: There are efficient ways to compute Ĥ, avoiding the explicit computation
of V ⊗ V. [B./Breiten ’15, B./Goyal/Gugercin ’18]

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Model Order Reduction for Nonlinear Systems 32/46

mailto:benner@mpi-magdeburg.mpg.de


Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).

1: Input: A,H,Ak ,B,C .

2: Compute low-rank factors of T-Gramians: PT ≈ SST and QT ≈ RRT .

3: Compute SVD of STR:

STR = UΣV T = [U1 U2]diag(Σ1,Σ2)[V1 V2]T .

4: Construct the projection matrices V and W:

V = SU1Σ
−1/2

1 and W = RV1Σ
−1/2

1 .

5: Output: reduced-order matrices:
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Numerical Results
Chafee-Infante equation

vt + v3 = vxx + v , (0, L)× (0,T ),

v(0, .) = u(t), (0,T ),

vx(L, .) = 0, (0,T ),

v(x , 0) = v0(x), (0, L).

Figure: Chafee-Infante equation.

Cubic nonlinearity that can be rewritten into QB form. [B./Breiten ’15’]

The transformed QB system is of order n = 1, 000.

The output of interest is the response at right boundary at x = L.

We determine the reduced-order system of order r = 10.
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Numerical Results
Chafee-Infante equation

Original System BT One-sided proj. Two-sided proj.
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Time [s]

Transient response

0 1 2 3 4
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101
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Figure: Boundary control for a control input u(t) = 5t exp(−t).
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Figure: Boundary control for a control input u(t) = 25(1 + sin(2πt))/2.
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Numerical Results
FitzHugh-Nagumo (F-N) model

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + q,

wt(x , t) = hv(x , t)− γw(x , t) + q,

with a nonlinear function

f (v(x , t)) = v(v − 0.1)(1− v).

The boundary conditions are as follows:

vx(0, t) = i0(t), vx(L, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, q = 0.05,
L = 0.2.

Input i0(t) = 5 · 104t3 exp(−15t) serves as actuator.
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Numerical Results
FitzHugh-Nagumo (F-N) model

Original system (n = 1500) Reduced system (BT) (r = 20)
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(a) Limit-cycles at various x .
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(b) Projection onto the v−w plane.

Figure: Comparison of the limit-cycles obtained via the original and reduced-order (BT)
systems. The reduced-order systems constructed by moment-matching methods were
unstable.
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Polynomial Control Systems

Now, consider the class of polynomial control (PC) Systems:

ẋ(t) = Ax(t) +

np∑
j=2

Hj

(
⊗jx(t)

)
+

np∑
j=2

m∑
k=1

Nk
j

(
⊗jx(t)

)
uk(t) + Bu(t),

y(t) = Cx(t), x(0) = 0,

where

np is the degree of the polynomial part of the system,

x(t) ∈ Rn, ⊗jx(t) = x(t)⊗ · · · ⊗ x(t)︸ ︷︷ ︸
j-times

,

u(t) ∈ Rm, and y(t) ∈ Rp, n� m, p.

A ∈ Rn×n, Hj ,N
k
j ∈ Rn×nj , B ∈ Rn×m and C ∈ Rp×n.

Assumption: A is supposed to be Hurwitz ⇒ local stability.

Examples: FitzHugh-Nagumo and Chafee-Infante equations lead to cubic control
systems; cubic-quintic Allen-Cahn equation to quintic control system.
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Gramians for PC Systems
The reachability Gramian

Expanding the response of the PC system into a Volterra series representation and
following the same ideas as in the QB case, we define the reachability Gramian as

P =
∞∑
k=1

∫ ∞
0

· · ·
∫ ∞

0

P̄k(t1, . . . , tk)P̄k(t1, . . . , tk)Tdt1 . . . dtk ,

where P̄1(t1) = eAt1B, P̄2(t1, t2) =
m∑

k=1

eAt1Nk
1 e

At2B,

P̄3(t1, t2, t3) = eAt1H2e
At2B ⊗ eAt3B, . . . are the kernels of the Volterra series.

Theorem

The reachability Gramian P of a PC system solves the polynomial Lyapunov equation

AP + PAT + BBT +

np∑
j=2

Hj

(
⊗jP

)
HT

j +

np∑
j=2

m∑
k=1

Nk
j

(
⊗jP

)(
Nk

j

)T
= 0.
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Gramians for PC Systems
The reachability Gramian
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Gramians for PC Systems
Dual system and observability Gramian

The Observability Gramian is defined as follows

First, we write the adjoint system as [Fujimoto et. al. ’02]

ẋ(t) = Ax(t) +

np∑
j=2

Hj x
⊗
j

(t) +

np∑
j=1

m∑
k=1

Nk
j x
⊗
j

(t)uk (t) + Bu(t),

˙xd (t) = −AT xd (t) −
np∑
j=2

H
(2)
j

x
⊗
d,j

(t) −
np∑
j=1

m∑
k=1

(
N
k,(2)
j

)
x
⊗
d,j

(t)ud,k (t) − CT ud (t), xd (∞) = 0,

yd (t) = BT xd (t).

Then, by taking the kernel of Volterra series, one has

Theorem

Let P be the reachability Gramian. Then, the observability Gramian Q of a PC system
solves the polynomial Lyapunov equation

ATQ + QA + CTC +

np∑
j=2

H
(2)
j

(
⊗j−1P ⊗ Q

)(
H

(2)
j

)T
+

np∑
j=2

m∑
k=1

N
k,(2)
j

(
⊗j−1P ⊗ Q

)(
N

k,(2)
j

)T
= 0.
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Truncated Gramians

Polynomial Lyapunov equations are very expensive to solve.

As for QB systems, we thus propose truncated Gramians that only involve a
finite number of kernels.

PT =

np+1∑
k=1

∫ ∞
0

· · ·
∫ ∞

0

P̄k(t1, . . . , tk)P̄k(t1, . . . , tk)Tdt1 . . . dtk ,

Truncated Gramians

The reachability truncated Gramian solves

APT + PT A
T + BBT +

np∑
j=2

Hj⊗jPlH
T
j +

np∑
j=2

m∑
k=1

Nk
j ⊗jPl

(
Nk

j

)T
= 0.

where APl + PlA
T + BBT = 0

Advantage: Only need to solve a finite number of (linear) Lyapunov
equations.
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Balanced Truncation for Polynomial Systems
Numerical Example, the FitzHugh-Nagumo model, revisited

εvt(x , t) = ε2vxx (x , t) + f (v(x , t))− w(x , t) + q,

wt(x , t) = hv(x , t)− γw(x , t) + q,

with a nonlinear function

f (v(x , t)) = v(v − 0.1)(1− v).

The boundary conditions are as follows:

vx (0, t) = i0(t), vx (L, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, q = 0.05, L = 0.2.

After discretization we obtain a PC system with cubic nonlinearity of order
npc = 600. [B./Breiten ’15]

The transformed quadratic-bilinear (QB) system is of order nqb = 900.

The outputs of interest v(0, t),w(0, t) are the responses at the left boundary at
x = 0.

We compare balanced truncation for PC and QB systems.
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Numerical Example
Singular values decay

Decay singular values for PC systems is faster ⇒ smaller reduced order
model!
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Numerical Example
Time-domain simulations

Original PC system of order 600. Original QB system of order 900.

Reduced PC system of order 10. Reduced QB system of order 10.
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Numerical Example
Time-domain simulations

Original PC system of order 600. Original QB system of order 900.

Reduced PC system of order 10. Reduced QB system of order 30.
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Numerical Example
Time-domain simulations

Original PC system of order 600. Original QB system of order 900.

Reduced PC system of order 10. Reduced QB system of order 43.
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Conclusions

BT extended to bilinear, QB, and polynomial systems.

Local Lyapunov stability is preserved.

As of yet, only weak motivation by bounding energy functionals.

No error bounds in terms of ”Hankel” singular values.

Computationally efficient (as compared to nonlinear balancing), and input
independent.

To do:

improve efficiency of Lyapunov solvers with many right-hand sides further;
error bound;
conditions for existence of new QB Gramians;
extension to descriptor systems;
time-limited versions.
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